3d Video Wallpaper Biography
Source (google.com.pk)
3D television (3DTV) is television that conveys depth perception to the viewer by employing techniques such as stereoscopic display, multi-view display, 2D-plus-depth, or any other form of 3D display. Most modern 3D television sets use an active shutter 3D system or a polarized 3D system, and some are autostereoscopic without the need of glasses.
According to DisplaySearch, 3D televisions shipments have totaled 41.45 million units in 2012, compared with 24.14 in 2011 and 2.26 in 2010.
The stereoscope was first invented by Sir Charles Wheatstone in 1838. It showed that when two pictures are viewed stereoscopically, they are combined by the brain to produce 3D depth perception. The stereoscope was improved by Louis Jules Duboscq, and a famous picture of Queen Victoria was displayed at The Great Exhibition in 1851. In 1855 the Kinematoscope was invented. In the late 1890s, the British film pioneer William Friese-Greene filed a patent for a 3D movie process. On 10 June 1915, Edwin S. Porter and William E. Waddell presented tests in red-green anaglyph to an audience at the Astor Theater in New York City and in 1922 the first public 3D movie The Power of Love was displayed.
Stereoscopic 3D television was demonstrated for the first time on 10 August 1928, by John Logie Baird in his company's premises at 133 Long Acre, London. Baird pioneered a variety of 3D television systems using electro-mechanical and cathode-ray tube techniques. In 1935 the first 3D color movie was produced. By the Second World War, stereoscopic 3D still cameras for personal use were already fairly common. In the 1950s, when TV became popular in the United States, many 3D movies were produced for cinema. The first such movie was Bwana Devil from United Artists that could be seen all across the US in 1952. One year later, in 1953, came the 3D movie House of Wax which also featured stereophonic sound. Alfred Hitchcock produced his film Dial M for Murder in 3D, but for the purpose of maximizing profits the movie was released in 2D because not all cinemas were able to display 3D films. The Soviet Union also developed 3D films, with Robinzon Kruzo being its first full-length 3D movie, in 1946.
There are several techniques to produce and display 3D moving pictures. The following are some of the technical details and methodologies employed in some of the more notable 3D movie systems that have been developed.
The future of 3D television is also emerging as time progresses. New technology like WindowWalls (wall-size displays) and Visible light communication are being implemented into 3D television as the demand for 3D TV increases. Scott Birnbaum, vice president of Samsung's LCD business, says that the demand for 3D TV will skyrocket in the next couple of years, fueled by televised sports. One might be able to obtain information directly onto their television due to new technologies like the Visible Light Communication that allows for this to happen because the LED lights transmit information by flickering at high frequencies.
Production of events such as live sports broadcasts in 3D differs from the methods used for 2D broadcasting. A high technical standard must be maintained because any mismatch in color, alignment, or focus between two cameras may destroy the 3D effect or produce discomfort in the viewer. Zoom lenses for each camera of a stereo pair must track over their full range of focal lengths.
Addition of graphical elements (such as a scoreboard, timers,or logos) to a 3D picture must place the synthesized elements at a suitable depth within the frame, so that viewers can comfortably view the added elements as well as the main picture. This requires more powerful computers to calculate the correct appearance of the graphical elements. For example, the line of scrimmage that appears as a projected yellow line on the field during an American football broadcast requires about one thousand times more processing power to produce in 3D compared to a 2D image.
Since 3D images are effectively more immersive than 2D broadcasts, fewer fast cuts between camera angles are needed. 3D National Football League broadcasts cut between cameras about one-fifth as often as in 2D broadcasting. Rapid cuts between two different viewpoints can be uncomfortable for the viewer, so directors may lengthen the transition or provide images with intermediate depth between two extremes to "rest" the viewers eyes. 3D images are most effective if the cameras are at a low angle of view, simulating presence of the viewer at the event; this can present problems with people or structures blocking the view of the event. While fewer camera locations are required, the overall number of cameras is similar to a 2D broadcast because each position needs two cameras. Other live sport events have additional factors that affect production; for example, an ice rink presents few cues for depth due to its uniform appearance.
3d Video Wallpaper
3d Video Wallpaper
3d Video Wallpaper
3d Video Wallpaper
3d Video Wallpaper
3d Video Wallpaper
3d Video Wallpaper
3d Video Wallpaper
3d Video Wallpaper
3d Video Wallpaper
3d Video Wallpaper
No comments:
Post a Comment